Oh SSH-it, what's my fingerprint? A Large-Scale Analysis of SSH Host Key Fingerprint Verification Records in the DNS

Sebastian Neef @ CANS 2022

Chair for Security in Telecommunications Technische Universität Berlin, Germany neef@tu-berlin.de

2022-11-14

- Secure Shell (SSH) protocol is widely used to connect to remote systems
- Anecdotal evidence suggested that users do not properly verify host key fingerprints [1]
- An incomplete or incorrect verification embodies a security risk (i.e. MITM)

- Secure Shell (SSH) protocol is widely used to connect to remote systems
- Anecdotal evidence suggested that users do not properly verify host key fingerprints [1]
- An incomplete or incorrect verification embodies a security risk (i.e. MITM)
- SSHFP records is one solution standardized with RFC 4255 in 2006
- Little research: Only few records observed by Gasser et al. [NOMS 2014] [2]
- \Rightarrow Measure its adoption almost a decade later.

- Answers to the following questions:
- RQ1 How common are DNS-based host key verification records (SSHFP)?
- RQ2 Do the SSFHP records match their service counterpart?
- RQ3 Are these records properly secured using DNSSEC?
 - Artifacts from our large-scale analysis:
 - Python SSHFP-library
 - All analysis scripts & (intermediate) data sets

What is SSH host key verification?

- SSH uses public-key cryptography to establish the authenticity of a server
- TOFU requires the user to verify the server's host key fingerprint

```
$ ssh server
The authenticity of host 'server (192.168.10.24)' can't be established.
ECDSA key fingerprint is SHA256:jq3V6ES34fNDKdn5L1sbmhoyJ5MN9afd9wIS1Upa1dc.
+---[ECDSA 256]---+
             0...|
             + . E|
            * . .|
         + 0
       S.o+ + . |
      = =Bo* + .|
       . **=B + o+
       = *00 *.=|
       . . .o+.*o|
+----[SHA256]----+
Are you sure you want to continue connecting (yes/no/[fingerprint])?
```

Why is this important?

• In short: Verify that a user connects to the correct server.

If not, malice-in-the-middle attacks might obtain credentials or unauthorized access
 ⇒ Host key verification is a crucial security feature that should always be done

How to perform host key verification?

• Manually

- A user asks the administrator for the fingerprints
- The user manually verifies the fingerprint
- Certificate Authority
 - An administrator deploys a root-CA to the user's device(s)
 - The SSH client validates the host key's signature and verifies the fingerprint
- SSHFP DNS records
 - An administrator deploys the fingerprints as SSHFP DNS records using DNSSEC
 - The SSH client queries these records and verifies the fingerprint

RFC 4255: Using DNS to Securely Publish SSH Key Fingerprints

- RFCs 4255, 6594, 7479, 8709 define and extend SSHFP records
- Format: SSHFP <KEY-ALGO> <HASH-TYPE> <FINGERPRINT>

Table: Values for the SSHFP KEY-ALGO field.

Value	Algorithm	RFC
0	reserved	4255
1	RSA	4255
2	DSA	4255
3	ECDSA	6594
4	ED25519	7479
5	unassigned	-
6	ED448	8709

Table: Values for the SSHFP HASH-TYPE field.

Value	Algorithm	RFC			
0	reserved	4255			
1	SHA1	4255			
2	SHA256	6594			

Real-world example

[sneef@WorkTop	~]\$	dig	SSHFP	opendev.or	g +noall	+;	an	swer +question	
;opendev.org.				IN	SSHFP				
opendev.org.			3600	IN	SSHFP	3	2	C9B288FF042ED0934FEB313BE277B546896C8C585FAED5C3057189A9 8585C5	FD
opendev.org.			3600	IN	SSHFP	4	1	1D866A8F892294F28DB9E3CA7827FE8D4E93588E	
opendev.org.			3600	IN	SSHFP	4	2	BE05BC5F56D5DF24F68ED9A661904B67BA3CB9586DBD9AB9F5D0CD51 55184D	1C
opendev.org.			3600	IN	SSHFP	1	1	15D5F6642C9424BBE5DA0D8A99C0558B790A6C4D	
opendev.org.			3600	IN	SSHFP	1	2	E9749FDE703418C5D810CEA7DDCF6639B2070CFA64020AC8F31B4671 FA6CAF	01
opendev.org.			3600	IN	SSHFP	3	1	2E8E854928BE740BE49C754F99DEE256545338EE	

ightarrow RSA (1), ECDSA (3), ED25519 (4) keys with SHA1 (1) and SHA256 (2) hashes

[sneef@WorkTop ~]\$ ssh -v -o UserKnownHostsFile=/dev/null -o VerifyHostKeyDNS=yes opendev.org 2>&1 | grep -P '(host.key)|(fingerprint)'
debug1: kex: host key algorithm: ssh-ed25519
debug1: Server host key: ssh-ed25519 SHA256:vgW8X1bV3yT2jtmmYZBLZ708uVhtvZq59dDNUVUYTRw
debug1: found 6 secure fingerprints in DNs
debug1: verify_host_key_dns: matched SSHFP type 4 fptype 2
debug1: verify_host_key_dns: matched SSHFP type 4 fptype 1

debug1: matching host key fingerprint found in DNS

Data collection

- **1** Query a domain for SSHFP records and validate their format
- 2 Query A records and collect server-side host key fingerprints using SSH
- **3** Resend SSHFP query through DNSSEC resolver
- **4** Match SSHFP records with server-side fingerprints

- Empirically collected data from two domain sets:
 - Tranco 1M (ID: G8KK)
 - $\bullet~>515M$ domains observed on the certificate transparency log over 26 days
- Quantitative analysis to answer our RQs
- Focus on reproducibility: All code and (intermediate) data sets available [3,4]

- 105 domains (0.0105%) with 465 SSHFP records in total
- 75 SSH servers (72 domains) provide 380 server-side fingerprints
- 66 hosts with \geq 1 matching fingerprint (256 fingerprints)
- 28 domains are DNSSEC secured

- Scanned 515M domains over 26 days (136.5M unique; 45M registrable) ightarrow repetitions
- 23,823 unique SSHFP records from 74,740 record sets (5,961 unique) mapping to 17,672 unique domains (7,007 registrable)
- 16,331 SSH servers (11,524 unique domains) provide 72,512 server-side fingerprints
- 14,515 hosts with \geq 1 matching fingerprint (10,378 unique domains)
- 3,896 unique domains are DNSSEC secured

registrable domain: example.com; unique domain: www.example.com,mail.example.com,...

SSHFP vs. server-side host key fingerprint matching

• < 50% of hosts fulfill a 100% matching ratio required by newer OpenSSH versions [5]

100% (36, 48.0%)

50% (8980, 54.99%)

SSHFP and DNSSEC

2022-11-14 14 / 18

Discussion

• Prevalence

- Overall low (~1 in 10,000 domains)
 - Not enabled by default in OpenSSH
 - Dependency on 'secure DNS' (i.e. DNSSEC)
- Our work and Gasser et al. can only provide a lower bound
- Security & Privacy
 - Lower matching rate than Gasser et al. (88% vs. 94%)
 - Improper deployments: Mismatching SSHFP records or wrong KEY-/HASH-/FP values
 - Increase in DNSSEC adoption (44% vs. 31.8%), but many records still insecure
 - Modern key algorithms (EC*, SHA-256) are still behind established ones (RSA, DSA, SHA-1)
 - Duplicate fingerprints disclose links between domains or potential key-reuse

Limitations

- No insight into *private* DNS servers, only public ones
- 5% DNS resolving errors (NXDOMAIN, timeouts, ...)
- Short disconnects from the certificate transparency log provider (\leq 3% of the total time)

• Future Work

- Find alternative and better domain sources
- Longitudinal study to monitor changes in adoption and deployment
- Studying causes of the low SSHFP adoption: unawareness? technical?

- In this work, we performed a large-scale analysis of SSHFP records
- (Still) no widespread adoption (~1 in 10,000 domains), although its standardization was \geq 15 years ago
- Misconfiguration eliminates most benefits:
 - DNS and server-side fingerprints differ \rightarrow broken verification for \geq 50% of hosts
 - Lack of DNSSEC violates the standard \rightarrow reduced security for ${\sim}50\%$ of domains
- If used correctly, SSHFP records can mitigate many of SSH's TOFU risks!

Thank you for your time and attention!

Let's talk!

Feel free to reach out: neef@tu-berlin.de Sebastian Neef - @gehaxelt

References

- 1 Gutmann, P.: Do Users Verify SSH Keys? p. 2
- Qasser, O., Holz, R., Carle, G.: A deeper understanding of SSH: Results from Internet-wide scans. In: 2014 IEEE Network Operations and Management Symposium (NOMS). pp. 1–9 (May 2014). https://doi.org/10.1109/NOMS.2014.6838249
- https://github.com/gehaxelt/sshfp-dns-measurement
- 4 https://zenodo.org/record/6993096
- bttps://marc.info/?l=openssh-unix-dev&m=164700394009668&w=2

KEY-Algo and Hash-Type values

Table: Distribution of KEY-ALGO and HASH-TYPE values for the Tranco 1M list

Data From		Hash Type						
	RESERVED	RSA	DSA	ECDSA	ED25519	ED448	SHA1	SHA256
DNS	0	131	79	109	103	0	245	177
SSH	0	138	22	106	114	0	190	190
 Matching 	0	93	10	74	79	0	151	105
 Mismatching 	0	45	12	32	35	0	39	85

Table: Distribution of KEY-ALGO and HASH-TYPE values for the Certificate Transparency Logs

Data From			Hasł	Hash Type				
	RESERVED	RSA	DSA	ECDSA	ED25519	ED448	SHA1	SHA256
DNS	1	7,536	2,367	6,726	7,191	2	9,054	14,769
SSH	0	26,974	5,680	19,562	20,296	0	36,256	36,256
 Matching 	0	15,190	1,528	11,972	12,211	0	21,871	19,030
– Mismatching	0	11,784	4,152	7,590	8,085	0	14,385	17,226
Sebastian Neef @ CANS 2022			Re	ferences				2022-11-14 2 /

- RFC 1035 standardizes the DNS protocol in 1987, but without security
- DNSSEC introduced with RFC 2535 in 1999 and superseded by RFC 4033ff in 2005: "The DNS security extensions provide origin authentication and integrity protection for DNS data, as well as a means of public key distribution. These extensions do not provide confidentiality."
- $\Rightarrow\,$ Mitigate fingerprint manipulation on the DNS-level

Gasser et al. vs. our work

- Gasser et al. used PTR records:
 - **1** Scan IPv4 space for hostnames (PTR)
 - **2** Forward-resolve (A) for validation
 - **3** Query SSHFP records
 - **4** Compare the fingerprints
- We used a longitudinal approach with first SSHFP followed by A queries
 - 1 Query SSHFP records
 - **2** Query A records
 - **3** Compare the fingerprints
- For our over 10,000 SSHFP domains, only ${\sim}1,900$ had reverse lookup information correctly set up
- \rightarrow Both approaches have their (dis-)advantages